Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Antiviral Res ; 185: 104974, 2021 01.
Article in English | MEDLINE | ID: covidwho-927811

ABSTRACT

Vaccines and antiviral agents are in urgent need to stop the COVID-19 pandemic. To facilitate antiviral screening against SARS-CoV-2 without requirement for high biosafety level facility, we developed a bacterial artificial chromosome (BAC)-vectored replicon of SARS-CoV-2, nCoV-SH01 strain, in which secreted Gaussia luciferase (sGluc) was encoded in viral subgenomic mRNA as a reporter gene. The replicon was devoid of structural genes spike (S), membrane (M), and envelope (E). Upon transfection, the replicon RNA replicated in various cell lines, and was sensitive to interferon alpha (IFN-α), remdesivir, but was resistant to hepatitis C virus inhibitors daclatasvir and sofosbuvir. Replication of the replicon was also sensitive overexpression to zinc-finger antiviral protein (ZAP). We also constructed a four-plasmid in-vitro ligation system that is compatible with the BAC system, which makes it easy to introduce desired mutations into the assembly plasmids for in-vitro ligation. This replicon system would be helpful for performing antiviral screening and dissecting virus-host interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Chromosomes, Artificial, Bacterial , Replicon/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Hepacivirus/drug effects , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Interferon-alpha/pharmacology , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , Sofosbuvir/pharmacology , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
3.
4.
Emerg Microbes Infect ; 9(1): 1988-1996, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-730431

ABSTRACT

ABSTRACT Pandemic SARS-CoV-2 has caused unprecedented mortalities. Vaccine is in urgent need to stop the pandemic. Despite great progresses on SARS-CoV-2 vaccine development, the efficacy of the vaccines remains to be determined. Deciphering the interactions of the viral epitopes with the elicited neutralizing antibodies in convalescent population inspires the vaccine development. In this study, we devised a peptide array composed of 20-mer overlapped peptides of spike (S), membrane (M) and envelope (E) proteins, and performed a screening with 120 COVID-19 convalescent sera and 24 non-COVID-19 sera. We identified five SARS-CoV-2-specific dominant epitopes that reacted with above 40% COVID-19 convalescent sera. Of note, two peptides non-specifically interacted with most of the non-COVID-19 sera. Neutralization assay indicated that only five sera completely blocked viral infection at the dilution of 1:200. By using a peptide-compete neutralizing assay, we found that three dominant epitopes partially competed the neutralization activity of several convalescent sera, suggesting antibodies elicited by these epitopes played an important role in neutralizing viral infection. The epitopes we identified in this study may serve as vaccine candidates to elicit neutralizing antibodies in most vaccinated people or specific antigens for SARS-CoV-2 diagnosis.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , B-Lymphocytes/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Humans , Immunization, Passive , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Envelope Proteins/immunology , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL